.
第1章—人工智慧的基本觀念,介紹了關於資料、問題類型、演算法的分類與範例,以及人工智慧演算法用途等等的基本常識與概念。第2章—搜尋演算法基礎,介紹了資料結構的核心觀念、簡易搜尋演算法的原理與其用途。第3章—智慧搜尋,延續先前的簡易搜尋演算法並進一步介紹在找解上更有效率、以及可在競爭型環境中找解的搜尋演算法。第4章—進化演算法,深入介紹了基因演算法的運作原理,其中問題的解是藉由模仿自然界中的演化過程來迭代產生並改良。 第5章—進階進化演算法,本章是基因演算法的延續,並談到了關於如何調整演算法各步驟的進階概念,藉此來更有效地解決不同類型的問題。第6章—群體智慧:蟻群,本章談到了群體智能的基本觀念,並實際示範一遍蟻群最佳化演算法如何根據螞蟻的生活與工作方式來解決各種困難的問題。第7章—群體智慧:粒子,接續群體演算法並深入說明何謂最佳化問題,以及由於粒子群體最佳化方法可在大型搜尋空間中找到良好解,因此也可用於處理這類問題。第8章—機器學習,說明機器學習的工作流程,涵蓋資料準備、處理、建模、測試,運用線性迴歸來解決迴歸問題,使用各種決策樹來處理分類問題。第9章—類神經網路,說明了在訓練、運用類神經網路來找出資料中的樣式並進進預測時,所需的基本觀念、邏輯性步驟以及數學計算過程;同時也會強調類神經網路在機器學習流程中所扮演的角色。第10章—使用Q-學習進行強化學習,介紹了強化學習的重要觀念,從行為心理學開始,一路談到如何使用Q-學習演算法讓代理學會在環境中的所做的決策品質好壞。
白話機器學習 理解演算法|Python初學者的深度歷險 演算法學習手冊|寫出更有效率的程式